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ABSTRACT: We calculate shear viscosity to entropy density ratio in presence of four deriva-
tive (with coefficient /) and six derivative (with coefficient o/?) terms in bulk action. In
general, there can be three possible four derivative terms and ten possible six derivative
terms in the Lagrangian. Among them two four derivative and eight six derivative terms are
ambiguous, i.e., these terms can be removed from the action by suitable field redefinitions.
Rest are unambiguous. According to the AdS/CFT correspondence all the unambiguous
coefficients (coefficients of unambiguous terms) can be fixed in terms of field theory pa-
rameters. Therefore, any measurable quantities of boundary theory, for example shear
viscosity to entropy density ratio, when calculated holographically can be expressed in
terms of unambiguous coefficients in the bulk theory (or equivalently in terms of boundary
parameters). We calculate 7/s for generic six derivative gravity. We also calculate six
derivative corrections to central charges a and ¢ and show that s, n and n/s can be fixed
completely in terms of these central charges and another boundary parameter.
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1 Introduction and summary

One of the current interests, in the context of AdS/CFT, is to investigate different proper-
ties of quark-gluon plasma (QGP) created at the Relativistic Heavy Ion Collider (RHIC).
The temperature of the gas of quarks and gluons produced at RHIC is approximately
170 M eV which is very close to the confinement temperature of QCD. Therefore, at this
high temperature they are not in the weakly coupled regime of QCD. In fact near the
transition temperature the gas of quarks and gluons belongs to the non-perturbative realm
of QCD, where one can not apply the result of perturbative QFT to study their properties.
Different kinetic coefficients of this strongly coupled plasma is not possible to calculate
with the usual set up of perturbative QCD. The AdS/CFT correspondence [1-3], at this
point, appears as a technically powerful tool to deal with strongly coupled (conformal) field
theory in terms of weakly coupled (super)-gravity theory in AdS space. The AdS/CFT can
be an approximate representation of QCD only at high enough temperature since QCD
does not have any conformal invariance (3 function is not zero). However, we assume that
the QCD plasma is well described by some conformal field theory which has a gravity dual.

The first success in this direction came from the holographic calculation of shear vis-
cosity coefficient of conformal gauge theory plasma in the context of AdS/CFT [4]. Other



transport coefficients of dual gauge theory have also been calculated in the AdS/CFT
framework [5]-[44]. In this paper we will concentrate on an interesting conformally in-

variant measurable parameter of gauge theory plasma, namely, shear viscosity to entropy

density ratio (2). The primary motivation for this particular ratio is following. A large

class of gauge theories with gravity dual have 7 = ﬁ which is in a good agreement with
RHIC data.
In [6] Kovtun, Son and Starinets have conjectured that the ratio Z has a lower bound

(K'SS bound)
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for all relativistic quantum field theories at finite temperature and the inequality is sat-
urated by theories with gravity dual i.e., without any higher derivative corrections. The
leading o’ correction coming from type II string theory is R* term. In has been shown
in [41, 42] that the presence of R* term in the action increases the value of 1 beyond ﬁ.
But the story is different when one considers four derivative terms in the bulk action. These
terms appear in Heterotic string theory. It has been shown in [45, 46] that four derivative
terms actually decreases the value of I bellow the lower bound. In [45], authors proposed
an example of string theory model where the conjectured bound is violated.

An explicit and more detailed investigation on violation of K'SS bound has been studied
in [47] in the context of four derivative gravity. A generic four derivative action can have
three terms: Riemann?, Ricci? and R?(R is Ricci scalar). Second and third term can
be removed by field re-definition. Therefore we are left with two independent parameters:
coefficients of Riemann? and (dimension less) radius of AdS space. [47] found relations
between these two parameters in gravity side and two parameters in the boundary theory,
namely the central charges ¢ and a. Hence I can be expressed in terms of these two central
charges. Therefore they argued that the violation of K'SS bound depends on these two
central charges of boundary conformal field theory. First of all the central charges should
satisfy two conditions: ¢ ~ a > 1 and |c — a|/c < 1 and then the bound is violated when
c—a>0.

Though it is possible to determine these two parameters in the bulk action and hence
T in terms of two central charges of boundary theory in four derivative case but in a
generic higher derivative gravity it is not obvious how to express  in terms of independent
boundary parameters. For example, in this paper we consider generic six derivative terms
in bulk. These six derivative terms do not appear in any super-string (type IIA or IIB)
or heterotic theory but they can arise in bosonic string theory [48]. Therefore it is quite
interesting to study the effects of these terms on the hydrodynamic behavior of boundary
gauge theory plasma, in particular on the ratio g Needless to mention, the gauge theory
plasma is not super-symmetric in this case. There can be total ten possible six derivative
terms with different coefficients in bulk Lagrangian. We call those coefficients (or terms)
“ambiguous” which can be removed from the effective action by some field re-definition
and other coefficients (or terms) which can not be removed by any field re-definition we
refer them “unambiguous”. It is possible to show that among ten different terms eight of
them can be removed after a suitable field re-definition [49]. Therefore the bulk theory



has two unambiguous (six derivative) coefficients (we denote them by «; and ag). If we
assume that the effective bulk theory has a dual field theory description then different
parameters of boundary conformal field theory, which capture its aggregate properties,
should be able to fix the unambiguous couplings of dual gravity theory. In other words, all
the unambiguous coefficients of bulk theory can be expressed in terms of physical boundary
parameters. For example in [50] authors found that a combination of «; and ay (namely
201 + ag) is related to a coefficient (we denote it by 74) in field theory which appears in
correlation of energy one point function (three point function of energy momentum tensor).
We discussed about this in brief details in section 6. Therefore any measurable quantities
of boundary theory, for example shear viscosity to entropy density ratio, when calculated
holographically should be expressed in terms of unambiguous coefficients in the bulk theory
or boundary parameters.

We calculate the ratio 7 for generic six derivative terms. It turns out that the ratio
depends on two ambiguous coefficients (we call them a3 and ay). In section 2 we have
discussed these in details. The apparent dependence on ambiguous coefficients in physical
quantities is an artifact of our choice of starting Lagrangian. One could start with a La-
grangian where all the ambiguous coefficients are set to zero. In that case, shear viscosity
coefficient, entropy density and their ratio would be independent of these ambiguous coef-
ficients. However, for being more explicit we start with the most generic Lagrangian and
find that the physical quantities like 7, s and I depend on some ambiguous coefficients.
Therefore it seems to be puzzling how to express these quantities completely in terms of
boundary parameters. In this paper we show that it is still possible to express 7, s and %
in terms two central charges a and ¢ and other two unambiguous coefficients! a; and ao.

Our final results are?
_gersfis leza_L(ema)'_m] o 02
n=er i ¢ 8\ ¢ 12 ’ '
B T 4 (et 2+l + O3/ (1.3)
e 4 ¢ T8\ ¢ 180 '
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where T is the temperature and A is the 't Hooft coupling.

We obtain this result in the following way. Since six derivative terms appear with
coefficient a/? where four derivative terms are proportional to ¢, therefore to make all the
expressions correct up to order a/?, we need to consider the effect of four derivative terms to
order o? also. As we mentioned earlier at order o, the coefficients of R? and Ricci? terms
(61 and (s respectively) are ambiguous, they can be removed by field re-definition [49].
In fact they do not appear in the expression of g at order o/. But these two ambiguous

2

coefficients appear at order o’* (see section 2). Therefore the ratio 1 depends on three

!"'We assume that the ”unambiguous” coefficients of higher derivative gravity can be fixed by boundary
parameters.
*We are thanful to R. Myers for pointing out a mistake in eq. (1.2) and eq. (1.3) in the previous version.



unambiguous coefficients (B (at order /), a; and as (at order a?) and four ambiguous
coefficients (31, 33,3 and a4 at order o/?. Then we calculate two central charges a and ¢
for six derivative gravity. We consider a particular combination of these central charges,
namely “<*. It turns out that the combinations of ambiguous coefficients, which appear in

%. Therefore one can remove all

the expression of I, the same combination appears in
ambiguous coefficients in terms of this particular combination of central charges a and c.

Let us summarize the main results of this paper.

e In section 2 we consider the most general six derivative action. There can be total
ten independent invariants. We identify the ambiguous and unambiguous coefficients
of this generic action. We find that it is possible to drop six ambiguous terms from
the action on which ? does not depend. We also consider the effect of four derivative

terms to order o’2.

e In section 3 we calculate the perturbed background metric up to order o'2.

e In section 4 we compute the ratio g using effective action approach of [51].
e In section 5 we calculate the central charges a and ¢ for six derivative gravity.

e Finally in section 6 we write the expression for 7, s and 7 in terms of central charges
and two unambiguous parameters of bulk Lagrangian. We also discuss how to relate
the unambiguous coefficients of bulk theory to the physical boundary parameters
following [50].

e In appendix A and B we present the expressions for A;’s and B’s respectively which
appear in section 4.

e We also calculate shear viscosity coefficient using Kubo formula as a check of our

effective action calculation. In appendix C we outline the calculations.

e In appendix D we calculate leading r» dependence of Riemann and Ricci tensors which
appear in section 5.

2 The field ee-definition and Z

In this section we discuss the most general six derivative terms in the bulk Lagrangian and
their effects on shear viscosity to entropy density ratio. Generic six derivative terms can
be constructed out of Riemann tensor, Ricci tensors and curvature scalar terms or their
covariant derivatives. There are five possible dimension-6 invariants which do not involve
Ricci tensors or curvature scalars,

_ piv pof pA
I = R" ,R*) RV,

s
Iy = R R", R” .,

Iy = R*4R”T RM,,

I = RWQBR“:(SR”‘M ,

Is = RyapD*RMP (2.1)



They satisfy the following relations,

1 1
L=l N, Li=gh, Iy=-N—4l. (2.2)

Hence only two of them are independent. We will choose these two invariants to be I
and I.

Now consider the most general action containing all possible independent curva-
ture invariants

7= /d5x\/—_g L (2.3)
where
L =agR—2A+d <ﬁ1R2 + BoRyupo RMP7 + ﬂgRWR‘“’>
+a? <a1[1 + aoly + Ry g ROPRE + 04 RRy1ypo R*P7 + 05 Ry pp RV MR

+agRu R RY + a7 R, D*R™ + agRR,,, R" + agR® + alORD2R> +0(?) .
(2.4)

However, this action is ambiguous up to a field re-definition. It has been shown in [49] that
under the following field re-definition

Juv — guu = Guv + o (dLQWR + d2R“y)
+a*(d3Ryapy R + dagu Ropro R + ds Ryapy R + dg R\ R,
+d7D2Ruu + dSQuuRaﬁRaﬁ + dgg,uz/RQ + leQ;WDQR) + O(O/?’)
(2.5)

the coefficients ag, #2, 1 and «ay in the Lagrangian (2.4) remain invariant and all other
coefficients changes. This is because it is not possible to generate any higher rank tensor
from a lower rank tensor in (2.5). For example one can not get Riemann? term from
any Ricci term at order o and similarly any Riemann? term can not be generated from
any Ricci?, Rieman? or Ricci - Riemann terms at order o/2. Therefore the coefficients
B2, 1 and o are unambiguous. By proper choice of dy,...,djp one can set any desired
values to the coefficients (31,33 and as,...,aq9, for example we can set all of them to
zero. These are the ambiguous coefficients. Setting all ambiguous coefficients to zero the
action (2.3) becomes,

V=g L — /=g <d0R —2A + o BoRypo RIPT + a? <a1[1 + a212>> (2.6)

with some different @y which is related to ag and other ambiguous parameters.> The
action (2.6) and (2.3) are equivalent up to a field re-definition. Any physical quantity like

3@o gets contribution from /—g.



entropy, shear viscosity or their ratio calculated either from action (2.6) or (2.3) turns out
to be same after using the relation between ag and ag. That is, these quantities are field
re-definition invariant.

We calculate I for generic six derivative action and find that the ratio depends on some
ambiguous coefficients in (2.3). Before we start calculating 2 for the generic action (2.3)
we can use the following logic to understand that among ten ambiguous parameters six
of them never appear in the expression of 2.4 Therefore we can drop those terms at the
beginning to simplify our life.> Let us now find out those terms in the action on which 1
does not depend.

Consider the following Lagrangian,
L =agR—2A+a” <a5RW,pAR”ARW + agRu R RY + a7 R, D*R™
+agRR,, R" + agR® + aloRD2R> +0(a?) (2.7)
and following field re-definition,
G = G + <d5RW5VR“5 +dsRn R,
+d7D*R,,, + dsguw Rag R*® + dog,u, R? + dngD2R> +0(?) . (28

With proper choice of ds, dg. . . dig one can check that the resultant Lagrangian becomes,

V=9L — V=g(aR — 2A) . (2.9)

Also under the field re-definition (2.8) the metric scales in the following way,

Juv — C(O/)g;w (2'10)

where,
C(a') =1+ a/*(—16ds + 16dg + 80ds + 400dy) . (2.11)
Here we have used the leading equation of motion R,, = —4g,,. The scaling in (2.10)

does not change the temperature of the background spacetime and hence the diffusion

47+T, where D is diffusion
constant and T is temperature. Thus the ratio ? turns out to be ﬁ for action (2.7).

pole calculated from action (2.9) gives the standard result D =

Therefore we see that shear viscosity to entropy density ratio does not depend on as, ag -
- aqp up to order a/?.
One important thing to notice here is that the ratio 7 does not depend on 1 and (33

up to order o [45, 46]. One can consider the following field re-definition

I — Guv + O/(dlg;wR +daRy) (2.12)

4Though these coefficients may arise in the individual expressions of 77 and s. Since we are interested in
1 we drop these terms. However the final expressions (1.2) and (1.3) for  and s remain unchanged even if
we consider these terms.

®Other ambiguous terms can not be dropped using this logic.



and get rid off the terms 3 R? and ﬂngw with proper choice of d; and do. The new metric
is same as the original metric up to some constant scaling factor to order o' (substituting
the leading equation of motion at order o). Therefore one can argue that 7 is independent
of B and B3 up to order /. But this is not true when we consider terms to order o/2.
We can not only substitute the leading order equation of motion in (2.12) when we are
interested in a/? order. We have to consider equations of motion to order /. The equations

of motion to order o is given by [57],

/
Y
Ry = ~Agus + L L0, ~ 2012 — ol (5 + 45D R,
/

+27a(351 + B3+ B2)guwD*R + o/ (261 + B3 + 2B2) Dy R+ O(a/?) . (2.13)

Substituting this equations of motion in (2.12) we get,
Juv — Guv — 40/(5d1 + d2)guu
1

—{—0/2 [%(400ﬂ1 + 80ﬂ3) — 2d2(16(2ﬁ2 + ﬁg) — 32ﬂ2 + 80ﬁ1) Juv

do — dy
3

+a? 3, [ R, G — 2daRyuap R, 77| (2.14)

Therefore we see that the new metric is proportional to the original metric (with constant
proportionality factor) at order o/ but not at order /> when 35 # 0. Hence g may not
be independent of 3; and 33 at order o/?. It can have terms like (3132, 3233 and (32 at

order o/2.

3 The perturbed background metric

In this section we will find the perturbative solution to Einstein equations in presence of
six derivative terms in the action up to order o/?. We write the basic equation of motions
and mention how to solve these equations up to order o/?. We will start with the following
five dimensional action with negative cosmological constant A = —6.

1
1= /d5£6\/ —g|R—2A+ o ﬂlRQ + ﬁng/pgR‘uypo + ﬁng/Rw/
167TG5
—i—O/Q (Oélfl + agly + OégRuagfyRﬁ’yapRg + OC4RRMVp0RMVpO>] . (3.1)

We take the leading value of of AdS radius is 1.
We consider the following metric ansatz (assuming planer symmetry of the spacetime),

d52 _ _p262A(p)+SB(p)dt2 + p2623(p)dp2 + pdeQ ) (32)

Substituting this metric in the (3.1) we get,

/ dp [2(2) +ao'e® 4 a'2£(6)] (3.3)

Z =
167Gs J



£ = /=g(R+12)
d

- 12p5eA(P)+5B(P) —2p(2 + pA’(p))eA(P)+3B(P) _ 2d_ (A'(p) + 4Bf(p))p3eA(p)+3B(p)
P

(3.4)

and £® and £ are four and six derivative terms in the Lagrangian evaluated on the
metric ansatz. The Euler-Lagrange equations which follow from this action is given by,

9A(p) ~ dp 9A(p) 9A(p) ~ dpoA(p) | dp? A7 (p)
. <a£<6> d 0£©® g2 9g® )

0?4 9e® <02<4> d 0gWw 2 a£<4>>

9A(p)  dpdAp) " dp? DAT(p)
o2 ) <a£<4> d e @2 9g@ )
— = —«

9B(p)  dp0B(p)  dp® 9B (p)

o[ 020 a 9g® g2 9g)
~“ \3B() ~dpoB () " A 957 (p)

(3.5)

We solve this equation perturbatively to find A(p) and B(p) . First we solve this equations
up to order o/. We use leading order solutions for A and B on the right hand side. The
order o terms on the right hand side will act as a source terms and we solve the equations
to find corrected A and B in presence of these source terms. There are two integration
constants when we solve this equations. We choose these two integration constants (to
order o) such a way that the corrected (black hole)solution has horizon at p = 1 and the
boundary (p — oo) metric is Minkowskian.

After getting the metric up to order o/ we now solve A and B to order o/2. We
substitute the solutions for A and B (corrected up to order ') on the right hand side

of equation (3.5) and get the solution for A and B to order o

. We again choose the
integration constants in order to set the black hole horizon radius at p = 1 and the boundary
metric to be Minkowskian.

The solution is given by (after changing the coordinate p — —-),

Jr

2 _ 2, 9(r) o 1 5
ds® = f(r)dt” + 3 dr —i—rdx (3.6)

where f(r) and g(r) are given by,
1 2 !
fry=r——-— 27“(7“ — 1)ﬁ20¢
r
1
+§r(r2 —1) (12(27’2 —31)ay + (4812 — 33)ap + 24(2r% + 3)az — 24(12r% 4 T)ay

+462(—2201 + 487231 4 1496, — 42126y + 3463))0/2 (3.7)



and
r 27“(1061 + (1 —3r2)py + 253)0/
1—1r2 3(r2—1)

T
9(r2 —1)
—24(1 — 9r% + 36r*")az + 24(5 — 2172 + 126r*) oy + 40037
+16(5 — 9r% — 126r") 31 32 + 4(1 + 4502 — 927r1) 55 4 16061 35

+ (12(1 — 9312 + 240r"Yay +9(1 — 1172 — 2r)

+16(1 + 2712 — 90r*) 5283 + 1655)0/2 . (3.8)

This is the background metric corrected up to order o/?. Also the black brane temperature
is given by,

1 1 — 2

r-1. 061 — 502 + 255
T 3
1
—|—F (732@1 — 630 — 31203 + 127204 + 700537
T
—19483, By — 60533 + 2803, B3 — 6203203 + 286§> a? . (3.9)

4 The effective action and shear viscosity

To calculate six derivative correction to the shear viscosity coefficient we need to find
the quadratic action for transverse graviton moving in background spacetime (3.6). We
consider the following metric perturbation,

Gy = ggg]} + hay(r, @) = gé%)(l + €®(r,z)) (4.1)

where € is an order counting parameter. We consider terms up to order €2 in the action of
®(r,z). The action (in momentum space) is given by,

4
5= 1671 = / (;’;4 dr [Al(r, B)(r, K)o (r, —k) + Ao (r, k)¢ (1, )@ (r, — )
+As(r, k)" (r, k)" (r, —k) + Ag(r,k)p(r, k)@ (1, —k)
+A5(T7 k)(b(?“, k)(b”(?“, _k) + AG(Tv k)(b/(r? k)¢l/(r7 _k) (4'2)

where the expressions for A;s are given in appendix A and ¢(r, k) is given by,

4.
o(r, k) :/(;lw)4elk'x<1>(r,x), (4.3)

k = {—w,E} and ‘'’ denotes derivative with respect to r. Up to some total derivative

terms this action can be written as,

S = 1 d4]€ d A k ]{7 A / ]{7 / k A Z ]{7 /1 k
- 16wG5/ (2r)? 7"[ 09 (r, K)$(r, —k) + A1¢' (1, k)¢ (1, =) + Ax¢" (1, k)¢ (r, —k)
(4.4)



where,

/ "
-/40 — Al(’l“, k‘) _ A4(T’ k) + A5(’I“, k)

2 2
AI
Ay = Ag(r,k) — As(r, k) — 76(;’ k)
Ay = As(r, k) . (4.5)

This action does not have the canonical form. Therefore to obtain the shear viscosity
coefficients from this action we follow the prescription given in [51]. We write the effective
action for the scalar field,

S 1 /(d4k4 [( A (k) + o BO (1) + 0280 (k) — )6 (. ) (4.6)

T 167Gs5 ) (2m)
(0) 112(0) 12 12(1) _
+(Ag " (r, k) + o' By " (r, k) + "By " (r, k) o(r, k) o(r, —k) | . (4.7)
where,

r2—1
AP (r) = — (4.8)

and )

(0) _ o
AP R) = g (4.9)

To evaluate the functions Bgo),Bgl),BéO), and Bél), we demand the equations of motion

obtained from action (4.4) and (4.6) are same at order o’ and order o/? separately. Com-

paring the equations of motion for ¢(r, k) from two actions at order o/ and o/? we get the

function By’s and By’s. Explicit expression for By’s and B;’s are given in appendix B.
The effective coupling K¢ of transverse graviton is given by,

(AP () + B (1, k) + 02 B1 (1, 1))
V=99""
1
=5+ (2081 +2(r* — 1) 32 + 483) o

167TG5Keff (7“) =

1

+=(= 36(r" — 22r° — 3)ay +9(45r +18r° = 7) a +8(3(7r* —2r* — 1) a3
—3(9r* +10r* — 5)ay + 237837 + 1861 Bor? + 6632850 — 1883572
+1081 Bor® — 4632831 4+ 100535 — B3 + 455 + 4051 83) ) o'* . (4.10)

The shear viscosity coefficient is determined by the following expression,

1
N = 75 (=2Kem (o))
To
1 _ (5ﬁ1 + ﬁg)o/
167G 271G
(1081 +63crp+120r3 — 42004 4100037 + 2832 81 + 4033 31 + 4833 + 433 + 2032 53 ) o>

6mGs

(4.11)

where r( is the position of horizon and in our parametrization ro = 1.

,10,



4.1 Shear viscosity to entropy density ratio

One can calculate entropy density using Wald’s formula [52, 53]. Order o/? correction to
entropy density s turns out to be,
L 2(561 — B2 + B3)d
= — 4.12
STeR Gs (4.12)
N (3601 + 2Tay — 360y — 4(5087 + 45261 + 208351 + 2633 + 233 + 80203) )2
3G5 '

Then we find shear viscosity to entropy density ratio is given by,

n 1 26d
s 4r 7
(25204 + 15309 + 24a3 — 120ay + 5652 (501 — B2 + £3))a’? (4.13)
3
Thus we see that the ratio g depends on ambiguous coefficients (1, 03, as and oy at
order o/?. But, we will show in the next section that we can get rid of these ambiguous

coefficients and express the result in terms of physical boundary parameters. To be explicit,
we calculate six derivative corrections to central charges a and ¢ and show that it is possible
to express 7 in terms of these central charges and unambiguous coefficients oy and a, which
can be fixed by other physical boundary parameters.

5 Conformal anomaly in six-derivative gravity

So far we have computed shear viscosity to entropy density ratio for some gauge theory
plasma whose gravity dual is governed by six derivative Lagrangian given by (3.1). In this
section we compute the six derivative corrections to central charges a and ¢ of this dual
field theory. The holographic procedure to compute conformal anomaly form two derivative
gravity has been given in [54] and later it has been generalized to four derivative gravity
in [55, 56]. We will follow the same approach and carry on the analysis for six derivative
terms in the action.

First we assume (can be easily checked) that the gravity theory has a AdS solution
even in presence of the higher derivative terms in the action. The metric, the curvature
tensors and the scalar are given as,

L2 d . . .
2 _ ~(0) v_ 2 Wij 5 i
ds® = G,ydztds” = 2 dr® + ZE : dx'da’? (5.1)
and,
d(d+1) d 1
0) _ 0) _ 0 0 _ 0 0 0 0
RO - po_ _dew RO, - -5 (6U6Y -606Y). (2

Here, L is the corrected AdS radius given in (5.19) and L = 1 when there is no higher
derivative terms present in the action. d is the dimension of boundary space-time. One
can obtain the equation of motion for the action (3.1) following [57, 58]. The terms in the
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equations of motion containing covariant derivatives of the curvature tensors vanish for the
above background (5.1). The equation finally reduces to,

fﬁfigil —12 = <‘%(ﬂ(d4-1xd 3)4——@?d(d 3) + ﬁédQQz :n)
_a@<i6ﬂd 5) + %%w1—6d+5y———d%d 5)
+%%fu+4xd—m>. (5.3)

As the AdS metric has a second order pole at infinity, it only induces a conformal equiv-
alence class [g%)] of metrics on the boundary. Following Gauge-Gravity correspondence,
the boundary field theory effective action in large N limit is,

WFT(Q(O)) = Sgrav(g;g(O))’ (54)

where Sgrav(9; g(0)) is the gravity action evaluated on classical (AdS) configuration which
approaches a representative boundary metric g(p). Now, for computing conformal anomaly,
we consider the following fluctuation around (5.1),

L? Gi
2 v o__ Z] ) :
ds® = G drtdx” = 47“2d + g da'tdz’ with,

9ij = 90y + 9 + 792y +ri(nr)hey; + - (5.5)

Here, g(g) is the representative boundary metric and h(y) is traceless with respect to gq).
The determinant of the full metric (5.5) can be written as,

V-G = gr_%_l\/%[l + tTr[g(l)]
w2 (gl - 71 [(a)] + §(mio)?) |+ 000 50

For computing the conformal anomaly of the boundary field theory, we need to evaluate
all the terms in the bulk action (3.1) in terms of (g(o),g(1), 9(2))- Then, we regard gy as
independent field on the boundary and solve g(;) in terms g(). As we will see, the term
involving g(2) will vanish on-shell (5.3). To regularize the infrared divergences of the on-
shell action, we introduce a cutoff € restricting the range of r integral as » > e¢. Then the

on-shell action can be written as,

_d _d_
S = So(g(0))e 2 + S1(g0), 91))e 2
TR + S Infe] + Sy + O(e?) . (5.7)

Then, the conformal anomaly 7 of the boundary field theory is given as,

1 d
Sln == —a/d X 4 /g(o)T . (58)
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We want to find 7 for d = 4. The expressions for 7 for four derivatives terms in Lagrangian
are given in [55, 56]. Here we present the computation for six-derivative terms only. The
generic structure of any term in the action has the following structure

2T%+1 \/9(0) (Xl + Xor + X3T2 + - ), (59)

where, (X1, X, ---) are some functions of (g(o), g(1), g2y, - -+ ). Since we are looking for the
term Sy, in (5.7), we only need the terms of order O(1) in (5.9). Hence, it is enough for
us to terminate the expansion in (5.9) at O(r?) for d = 4. Therefore the coefficient X3
will finally contribute to the anomaly 7. As we will see, this knowledge will help us to
pre-eliminate certain terms in our calculation.

We will summarize our main results for four six derivative terms in the La-
grangian (3.1). We follow the following notations:

r(og;l — Riemann tensor constructed out ofg(g).

0
1ri1rn(0)2 = r(?}klr(o)”kl, 1ric(o)2 = r(o)ijrgg).

— Ricci tensor constructed out ofg.

0) ij 1(0) .

1 = Iyt s -

o T = Ry RIT R,

Here, (u,v) indices run over full five dimensional space-time. One can split the
indices in (7; 1, j), where (7, j) runs over four dimensional boundary space time. From
the leading r—dependence of the curvature tensors (appendix D), it is easy to see
that only two combinations RZR%,LRZ?" and R;ZR{;:R?[ will contribute to Sj,. The
leading r—dependence of other possible combinations starts from r3 and hence they
do not contribute to anomaly. The expansions of 7} is,%

Ty = R R R
= R RN R +8 R R RY

—4d(d + 1) + 12r {r(o) +2(d - 1)Tr[9<1>]}
+r? [ — 61im©@* — 60r®" 9(1);; T 48(d — 3)Tr[g(2)]

+12(9 — 4d)Tr[(9(1))*] — 36(Tr[g(1)])2] +0(r%) . (5.10)

14 T
o Ty = RUYR{ R,

SWe have set L = 1 for these expansion. We will put back L later by dimensional analysis.
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Similarly, for 75, only R%Rﬁ;”le" ; and R;ZR{?RT k? , contribute to the anomaly.
The expansion is,

_ vV pPT Do A
Ty = REZRYT R,
_ pij pkmpln ir pik prl

T

=d(1—d*) +3(d—1)r [r(o) +2(d — 1)Tr[g(1)]}

ij

2| = 31ic@” + ; rim(©” + 9(3 — d)r(o)ij 9(1)s; — 6r(0)Tr[g(1)]
—12(d — 1)(3 — d)Tr[g2)] + (—9d> + 39d — 39)Tr[(g(1))]

+3(7 — 4d)(Tr[g(1)])2} +0(r3) . (5.11)

o T3 = Ry RIIR:

For T3, three combinations contribute. They are RZRM R | R:;RZZR: and

A jm* Y
R;;R%TR{“. The expansion is,

Ty = RWY RO R
— RIRE R 42 <RZZ;? R} Ry + R R} RT" >
= 2d*(d + 1) — 6dr [r(o) +2(d — 1)Tr[g(1)]]

412 [4 ric®” +drim©” +-2(11d — 8)r” gy +81OTr[g1)] +24d(3 — d) Tr[g(s))

%

+(20d? — 54d + 16)Tr[(g1))*] + 2(11d — 8)(Tr[g)))?| + O(%) . (5.12)

o Ty = RRIJR:

For this term we only need to find contraction of two Riemann tensors. The expan-
sion is,

T, = RRIRLY

= R(RRRI! + ARR" R]))

T r
= —2d2(1 + d)2 + 67”d(1 + d) |:I‘(0) + 2(d — 1)T1‘g(1):|
2| — drfy) — d(1 + d)rimfy) — 14d(1 + ) g, — 16(d — DO Telgqy)]
+24d(d — 3)(d + 1)Tr[g(9)] — 2d(1 + d)(8d — 19)Tr[(g1))’]

—2(13d% — 11d + 8)(Tr[g(1)])2} +0(r?) . (5.13)
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Substituting all these expressions and the expressions for order o’ terms in (3.1), we get,

1 . .
S = D) d$4\ /9(0) [(751 T(0)2 + 1o 1?10(0)2 + 3 r1m(0)2>
AT g+ BrOTrlg] + C Tr[(gr))?] + D (Trlgy))? + E Trlgey)) |- (5.14)
where,

4
t1 = LB — T
3 4
to=Lf— zaat 703
6 3 4 20
3 B2 7o + 5T 2 + T8~ 04 (5.15)

and

. L /< 5061 n 332 n 353)

T16Gsr Y \2GaLx " 1GsLr | 4GsLx
_0/2 150&1 + 9042 B 90&3 4 350&4
4G5L37T 16G5L37T 2G5L37T 2G5L37T
L
o (P n o n s
32Gsm 2G5 Lt 8Gs5Lm  8GsLw

+o/2< 3a 3an Qs 3ay >

8Gs5L3m  32G5L3m 4G5 L3T * 4Gy L37
1 3L 9 5!
_ Lo b n Ba n B3
8G57TL 16G57T 4G5L37T 8G5L37T 2G5L37T
4o 3a 5% 20
2 1 2 3 4
@ <G5L57T + 4G5 L5t GsLiw + G5L57T>
1 3L o 3B 2 B3
352Gl | 3G <8G5L37r T 16G. L3 | 8Gs L7
(5w L 5ap  bSag N 210y
8G5L57T 32G5L57T 4G5L57T 4G5L57T

1 6 4061 | 402 | 80
_ = L / i)
16Gan [ +6L +« <

L 5 s T

8 6a 16« 80«
2 1 2 3 4

It is easy to see that Tr[g(y)] term vanishes when the equation of motion (5.3) is satisfied.
The equation and the solution for g(;) are given by
y y il -
Ar%) + Bg%)r(o)r + QCQEo)gfo)g(l)kl + 2Dg%)g(0)g(1)kl =0 (5.17)

and

A AD - BC

9(yii = T "0 + mr(mg(om- (5.18)
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We can also rearrange equation (5.3) to write the corrected AdS radius as (for d = 4),
L=1- éo/(lOﬁl — Bo — 2033) + 1—180/2(—12041 — 9a + 243 — 1200
—50087 — 505 — 2085 — 10051 B2 — 2008135 — 208233 . (5.19)
Substituting all these expression in (5.14), we get the conformal anomaly as,
T = —aFy—cly
= —a <r(20) — 4ric%0) + rim%0)> +c <ér(20) — 2ric%0) + rim%0)> , (5.20)
where the coefficients a and ¢ are given as,

1 ,5(10831 + (2 + 2(33)

CT18Gsr YT 128(Gan)
L2800 + 4502 +5 ((1081 + B2 +23)* — 24a3 + 120a) (5.21)
« .
768G57T
and
o o o (5081 — 332 +10033)
128G 57 128G 57
o (500837 — 608231 + 2008531 — 11535 + 2055 — 12203)
768G5m
9 (2280[1 — 1170[2 — 720[3 + 3600[4)
— . 5.22
“ 768G (5.22)
6 m,sand?

It is interesting to compute the following combination,

cC—a

4
= 8/ Bs + 30/2(—36041 + 9as + 4(6as — 30as + F2(7081 — 502 + 1403))) . (6.1)

From the above relation (6.1) and (3.9), (4.11), (4.12) and (4.13), one can see that the
ambiguous coefficients (81, 43, a3, a4) appear in s, 7 and 1 and <2 in such a way that one
can replace them in terms of this combination of central charges. Hence, we can rewrite 7,

sand 1 as,
3 3 le—a 1{c—a)\? 9 3
n=2_8r"cT 1+Z ~ 3 — 1800’ (2a1 + a2) | + O(a’”), (6.2)
c
4 3 5c—a 3(c—a\® P 3
s=321"cT 1—{—1 —|—§ + 1207 (201 + a2) | + O(a?) (6.3)
c c
and
n_Lfj_ce-a 3fe—a)' 2 (201 + a)| + O(a?) (6.4)
M - —1920"* (201 + o). .
s Am c 4 c ! 2
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These are the main results of this paper. Here, we have been able to rewrite shear
viscosity 7, entropy density s and the ratio % in terms of central charges ¢ and a of boundary
field theory and two other unambiguous parameters a; and «s.

In [50] the authors considered energy correlation function which is quantum expecta-
tion value of a product of energy flux operators on the state produced by the localized
operator insertion,

(0]OTE(6,) -~ £(6n)O)0)
(0]010]0)

where O is the operator creating the localized state and 6y - - - 6,, are the (angular)positions

(€(61) -~ E(0n))

(6.5)

of the calorimeters which measures the total energy per unit angle deposited at each of
these angles. In particular they considered energy one point function (£(6)) when states are
created by stress tensor. This energy one point function is basically three point correlation
function of CF'T stress tensors. The most general expression for this energy one point
function is

() = (01, Ty O)enTikl0) _ q” [1 +T2<7€;kj6ilnjnl —l> +r4<7’€“nmj’2 —3>] (6.6)
(Ole;; TijenTir|0) 4 €5i€ij 3 €;i€ij 15

where ¢;; is symmetric polarization tensor and ¢ is the angle between the point on 52,
labeled by n;.

There are two undetermined parameters 75 and 74. In [50], it has been shown that these
two parameters can be related to the coefficients multiply higher order gravity correction.
When the dual gravity theory is governed by Einstein-Hilbert action (no higher derivative
terms) then these two parameters turn out to be zero. In higher derivative bosonic theory
when one considers terms like

O/ﬁ2R,uup0RMVpU + o? |:04111 + a2I2:|
then these two parameters are related to the coefficients of higher derivative terms,
/ 2 12
To ~ B2 + O(a’?) and Ty~ o flag,a9),

where, f are some linear functions in a1 and s (~ 201 + ag). 72 is also related to central
charges a and c of the theory (12 ~ (¢ —a)/c). Hence (s is fixed in terms of central charges
(at order ') [55, 56] and f is fixed in terms of 74 at order a2. Since all physical quantities
depend on a particular combination 2a; + as of unambiguous coeflicients therefore we can
completely fix them in terms of CFT parameters ¢, a and 74 (see equation (1.2), (1.3)
and (1.4)).

Thus we see that the physical measurable quantities 7, s and 1 of boundary field
theory are finally independent of ambiguous parameters and completely depend on physical
boundary parameters.
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A Expressions for A;’s

Expressions for A;’s in k — 0 limit are given by,

Al(T‘) =

A2 (’I“) =

1
~5.3 <(2592ﬁ§r6 + 6048315 — 276480470 + 1843203, Bor6

3
.
+576002 838 — 4788631* — 3168a3r? + 13392a4r% — 9288 Fort — 38163, G314

+650057 +65433 +26085 —12(816r° — 558r* + 19) g — (2880r° — 11347* — 171)
145605 — 22800 + 13005 B2 + 26006, B3 + 2606263)0/2)
(3602r% + 22081 + 2205 + 4483)d/ 2
+ N
3r3 r3
1

o ((2736ﬁ§r6 + 11520375 — 34560475 + 230451 Bor® + 124835 83r° — 6996521
.

+4862r* — 432037t + 11040y1* — 14165 Bort + 2408, B3r — 244835 B3

+65006772 + 37013312356 3212 + 984azr® — 2808472 + 185231 Bor?

+308031 3377 + 143632330 — 650037 — 1755 — 21235 — 12(312r°

—3187* + 19372 + 5)ay + 9(247° + 58¢* — 69r* + 19) as — 16803

+132004 — 820031 B2 — 236031 B3 — 14005 ﬁg)o/2>

N (110(r% = 1) B + (34rt + 12 = 3) By + 2(2r + 151 — 9) B5)
T

0/7“(7’2 — 1)2(4ﬂ2 + 03) — 40/27“(7“2 — 1)2 (16ﬁ%7’2 — 4a37’2

+4,83r% — 435 — 25§ + 24(7“2 + 1)a1 + 3(7°2 — 1)@2 — 203 + 800y

—40031 532 — 106183 — 95253)

1
5.3 (( — 72(37201 — 2(24165 + 96031 B2 + 1008332 + 493 — 1440 )7

.
+(21060 + 36( — 104985 — 13831 B2 — 3383382 + 6421 — 1040z + 1320y ) )r?
+(650037 + 13726281 + 26008331 + 355705 + 26035 — 2028a;; — 477y + 6003

—1848auy + 11963283) 7% + 1950087 + 19533 + 78033 — 6841 — 513 + 1368as3
—6840cvs + 390081 B2 + 780031 B3 + 7803 53)0/2>

+2(110(T2 +3) 61 + (90r* — 7r2 + 33) 8, + 22(r? + 3) F3)a’ 6 )
3r2 2

3
—3r4 =
r

2(r2 —1
2 1) (3600857 + 1008ai3r* — 345607 + 23043 Bor? + 172835 351
.

—34926357% — 144031 — 4320412 — 7201 Bor® — 936823372 + 650063 + 655
+2608; — 12(264r* — 150r* + 19)cy + 9(16r* + 34r* — 19) ap + 45603
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—2280c4 + 130031 32 + 260051 B3 + 2603233)
+4(r2 — 1) (110531 + (1872 4 11) By + 2203) o/ 4

4 =
3r T+7°

Ag(r) = 8(r* = 1) ( — (2405 + 88330 + 241 — 3as — 6a3)r* + (12635 + 4061 B>
+9832 + 205 — 24aq + 6asy + 2203 — 80ay
+108183) 7% + 263 — 3as + dag + 108185 + Bo33) >
+8(r2 — 1) ((4ﬁ2 + ﬂg)r2 + ﬁg)o/ . (A1)

B Expressions for By and B,

50 _ (13081w? + 612 Bow? — 115ow? + 2633w?)
0 12r2(r2 — 1)
B((]l) = % <( — 4248B§w27“4 + 12240a1w27“4 + 5148anw?rt — 432a3w2r4
2r (7"2 — 1)
+864aw’rt — 57651 fow?rt — 11528, fw’r? + 5916 52w r? — 69840 w?r?
—1818asw?r? 4 864asw?r? — 2448cuw?r? + 1272061 Bow?r? + 175252 Bsw?r?

+29006%w? — 1965w? 4+ 11652w? + 660a1w? — 369asw?® — 168a3w? + 840arsw?

£10081 5o + 11608, Baw? + 20ﬁ263w2)> (B.1)
(0) (r? — 1) (186212 4+ 11081 — 1352 + 2233)
B =~ 3r

B = % <(r2 — 1) ( — 15408837 + 316801 7! — 230dasr? — 1728c3r* + 34560147
—23040 Bort — 460832 F3r + 124206212 — 6984a1 12 — 11700972 + 7200372
+432041% 4 7201 Bor? + 324062 831% — 650067 + 7965 — 26053 — 6360, + 387an
+120a:3 — 6000ry + 1400, B2 — 26003, 33 + 285253)0/> . (B.2)

C Shear viscosity from Kubo’s formula

The shear viscosity coefficient of boundary fluid is related to the imaginary part of retarded

Green function in low frequency limit. The retarded Green function ny,xy(k:) is defined

in the following way. The on-shell action for graviton can be written as a surface term,

5= qoom | o gulh) Guyy )l
- 167G5 J (27)* 0 y,zy i 1) PO o
1 d*k
- Fayay(k C.1
167G / (2m)d 7Y y(F) (C.1)
where ¢ (k) is the boundary value of ¢(r, k) and ny,xy is given by,
ny,:vy(k) - 71,1_% 26y ay(k,7) (C.2)
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and shear viscosity coefficient is given by,

n = lim [lImGR (k)] . (C.3)

00 | w TY,TY

To calculate this number one has to know the exact solution, i.e., the form of ¢(r, k). The
solution for ¢(r, k) up to order o'? is given by,

o(r,k) = 1 —1ipwlog (1 — 7"2) — 6ic BBrwr? + 210/25( — 2236212 — 240372 + 48auyr?
193
—3261Bor® — 6432337 — 7005 + 2(22r% — 53) oy — <327’2 + 7) s
—28a3 + 1080y — 17231 2 — 6053233 )wr? (C.4)

8= ‘/—%(1 )2 (C.5)

With this solution we calculate F, (k) after adding proper Gibbons— Hawking boundary

where,

terms to the action (4.2). Then we find shear viscosity coefficient 7 from imaginary part
of Fyy,zy(k) following equation (C.3). It turns out that,

1 (3B By
167G 271G
(1081 + 632 +120r3 — 42004 4100037 + 2832 81 +4033 51 + 4833 + 433 + 2032 53 ) o>

67G5 '

1 (C.6)

D Leading r—dependence of curvature tensors

In this appendix, we give the r—dependence of various Riemann and Ricci tensors. As
discussed in section 5 below equation (5.9), while computing the four and six derivative
terms, we need to keep those terms up to order r2. If for some combinations, the leading
r—dependence starts from order r3, they will not contribute to anomaly.

_ — 0
Riji =7 ? [g(o)ilg(o)jk - g(o)ikg(o)jl] +r 1rz(jl)cl

+ 1900 (902 + )t + 900, (9(2) + 2 ik
=900 (92) + P2))ik — 900),. (92) + h(z))u]
+ [Ty — V{0l

+ _9<2>m7“(]°;3?] +0(r) - (D.1)
_ 1
Rrijk = 1 [_a(ng(g)ik — ng(Q)ij)] + 0(1) . (D.Q)

Ly = 7 =9(0)] + 10 | g0,
+rtt [—5(g(2) + h2))ij + (9(2))12]‘] +0(r?) (D.3)
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Rijkl = 0(1) Riikr =0(1)
Ry = 0(7"2) RY;, =0(r)
RT = O(1) Ri = O(r)
Rl = O(r?) R, =0(1) . (D.4)
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